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A simple and efficient procedure has been developed for the direct formation of epi-4-alkylamino-N-acet-
ylneuraminic acid derivatives as potential inhibitors of influenza neuraminidases. The allylic amination of
oxazoline 6 has been effected with a series of primary and secondary amines in the presence of catalytic
Pd(p-allyl)2(Et3P)2 to give the corresponding 4-epi-alkylamino products in a stereoselective and regio-
specific manner.

� 2009 Elsevier Ltd. All rights reserved.
Influenza neuraminidase is an exo-glycosidase responsible for
the cleavage of terminal N-acetylneuraminic acid residues from a
host of oligosaccharide substrates which decorate a range of glyco-
proteins and glycolipids.1 This enzyme is required by the influenza
virus to degrade cell-surface receptor molecules, a process which
facilitates the effective release of newly formed viral particles from
the surface of infected cells.2,3 As such, inhibitors of influenza neu-
raminidases such as Zanamivir 1 and the prodrug Oseltamivir ethyl
ester 2, have proved themselves as effective drugs for the clinical
treatment of influenza.4,5
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Compounds 1 and 2 act as competitive inhibitors and were

designed to mimic the ‘transition-state analogue’ 2-deoxy-2,3-
didehydro-N-acetylneuraminic acid (DANA) 3, itself a potent inhib-
itor of influenza neuraminidases (Km 4 lM).6 At the heart of the
potent inhibitory activity of both 1 and 2 is the introduction of a
basic nitrogen at the C-4 position, which is capable of forming an
important binding interaction with an anionic aspartate residue
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in the active site of the enzyme.7 The importance of this modifica-
tion was first reported by von Itzstein et al., where 4-amino-2,4-
dideoxy-2,3-didehydro-N-acetylneuraminic acid 4 (Km 40 nM)
was found to have 100-fold greater inhibitory potency against
influenza neuraminidase than DANA 3.8 Interestingly, von Itzstein
also found that the introduction of an amino group axial at C-4 also
improved inhibition, with epi-4-amino-2,4-dideoxy-2,3-didehy-
dro-N-acetylneuraminic acid 5 showing 10-fold greater inhibitory
activity (Km 300 nM) than 3.6 This improvement in inhibition
was ascribed to potential binding interactions between the axial
C-4 amino group and an active-site glutamate residue located
above the sugar ring. However, no further studies regarding either
the synthesis or biological evaluation of derivatives of 5 have been
reported. As part of our interest in the development of novel potent
inhibitors of influenza neuraminidases, we have developed a sim-
ple and efficient method for the synthesis of epi-4-alkylamino
derivatives of DANA, to explore further the inhibitory activities of
this interesting class of N-acetylneuraminic acids.

We have examined the allylic amination of the oxazoline 6 with
methylamine using several palladium/phosphine catalysts. Our
initial screening revealed that catalysts generated from Pd2(dba)3

and a variety of phosphine ligands (Et3P, Me3P and Ph3P) did not
catalyse the desired amination in reasonable yields. On the other
hand, the catalyst generated from (Pd(p-allyl)Cl)2 and Et3P was
found to act as a very efficient catalyst with a variety of amine
nucleophiles (Table 1). Treatment of 6 with methylamine in the
presence of the catalyst (5 mol %) generated from (Pd(p-allyl)Cl)2

and Et3P under standard reaction conditions (dichloromethane,
room temperature, 2 h)9 resulted in stereospecific and regioselec-
tive formation of the 4-epi-methylamino-N-acetylneuraminic acid
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7a in reasonable yield (46%) (entry 1). Compound 7a10 was con-
verted to the N-sulfonamide 811 for characterisation, with the con-
figuration at C-4 confirmed by 1H NOESY analysis which correlated
the C-4 methylamino group and H-6.
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Scheme 1. Proposed mechanism for reaction of 6 with amine nuc
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Scheme 2. Reaction of 6 with various amine nucleophile

Table 1
Reaction of 6 with various amines and palladium catalysts under standard reaction
conditions9

Entry Amine Catalyst Ratio Yield

R1 R2 7:9 7 + 9 (%)

1 Me H Pd(p-allyl)2(Et3P)2 1:0 46
2 Et H Pd(p-allyl)2(Et3P)2 1:0 75
3 Et Et Pd(p-allyl)2(Et3P)2 1:0 71

4 Me H Pd(p-allyl)2(Ph3P)2 1:10 61
5 Me H (Ph3P)4Pd 1:5 37
This configuration is consistent with the reaction mechanism
proposed in Scheme 1, where oxidative addition of the palladium
catalyst occurs on the face of the sugar ring opposite to the oxaz-
oline, yielding a (p-allyl)palladium complex with inversion of
configuration (Scheme 1). Subsequent nucleophilic attack by the
amine also occurs with inversion of configuration to yield products
with overall retention of configuration at C-4. When the above-
mentioned reaction was repeated for longer periods (overnight),
either in the absence of palladium catalyst, or with (Pd(p-allyl)Cl)2

present but no phosphine ligand, only starting material was recov-
ered, confirming the requirement for both catalyst and ligand.

Interestingly, the use of bulkier amines significantly improved
the yield of the reactions, whilst retaining the stereospecificity
and regioselectivity of amination at the C-4 position. Thus, treat-
ment of 6 with either ethylamine or diethylamine (Scheme 2), in
the presence of [Pd(p-allyl)Cl]2/Et3P, yielded the 4-epi-ethylamino-
7b12 or 4-epi-diethylamino- 7c13 products in 75% (entry 2) and 71%
(entry 3) yields, respectively.

We have also investigated the influence that various phosphine
ligands impart on the outcome of the reaction. Increasing the bulk
of the phosphine ligand altered the regioselectivity of the reaction,
yielding the products of both a- (C-4) and c- (C-2) amination
(Scheme 1). Treatment of 6 with methylamine in the presence of
(Pd(p-allyl)Cl)2/Ph3P gave the products of both a- and c-amina-
tion, 7a and 9a in a ratio of 1:10, in reasonable combined yield
(61%) (entry 4). On the other hand, treatment of 6 with (Ph3P)4Pd
gave 7a and 9a in a ratio of 1:5 but in significantly lower combined
yield (37%) (entry 5). The anomeric configuration of 9a has not
been confirmed but is inferred on the basis of the mechanism
described in Scheme 1. Also, the purification of 9a proved to be
difficult and it was considered likely that 9a was capable of under-
going spontaneous hydrolysis to the hemi-ketal 10.
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In conclusion, we have developed a simple and effective method
to generate novel 4-epi-alkylamino-N-acetylneuraminic acid deriv-
atives as potential inhibitors of influenza neuraminidases. These
derivatives were synthesised directly from the oxazoline 6 through
an allylic amination reaction in the presence of (Pd(p-allyl)Cl)2/
Et3P. Furthermore, this new reaction was shown to be completely
stereospecific and regioselective using this catalyst, to give the
product of a-amination axial at C-4. However, employing the
bulkier catalyst (Pd(p-allyl)Cl)2/Ph3P was found to reverse the
regioselectivity of the reaction to yield predominantly the c-ami-
nation (C-2) product.
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